The importance of goal-driven data

Anyone who works with digital mediums will always have some sort of fascination with metrics. One of the main pillars of sustainability for the advent of the digital age is the ability to measure and obtain data at a constant and up-to-date way that no other medium previously allowed. This allows for constant campaign optimisation and, of course, return on investment (ROI) evaluation. There’s nothing new with what I’ve just written – I’m basically stating the obvious.

Since metrics took an early stage in terms of value perception, most companies have been hoarding data in order to obtain the maximum amount of information possible from their campaigns – be it declarative or behavioural data. Every consumer input or interaction with brands is carefully being stored into vast databases that will then generate outputs, which brands can then use to optimise their communication or marketing efforts. This is the basic principle that originated what is today perceived as Big Data.

Campaign-oriented data

Usually used to evaluate specific campaign objectives. As a basic example, if you are aiming at awareness, measure visits. If you want to evaluate content relevance, measure page views per visit. If you are evaluating content reach, evaluate shares and mentions. Loyalty, evaluate brand engagement on social tools (note – tools, not necessarily websites). Evaluate the consumer traffic from and out of the aimed medium, be it the Facebook page, the YouTube channel or the website. Create links with offline touch points that ascertain where is the consumer coming from or going to in order to evaluate medium efficiency. Define exactly what your objectives are and evaluate the metrics relevant to them, so you won’t become confused with data that does not answer your questions.

Relationship-oriented data

The hardest to define and to begin with. This is the data usually related to identifying consumer behavioural patterns usually used on CRM platforms. This means defining what are the consumer paths you want to track, what is the long term relationship objective and its quality on the several touch points, what is the engagement rate of the consumer with the brand on the several campaigns developed and, above all, what are the interactions obtained with the consumer in off-peak brand moments.

Channel-oriented data

Set apart what the behaviour expectation is from the consumer on a given channel. Here you can have two tiers:

  • In terms of device-driven, if you are evaluating mobile data, consider that the input expected from the consumer isn’t the same as on a desktop environment. Mobile data comes from a more direct, primal impulse than a pondered, thought-based behaviour that is generated on an isolated medium such as the desktop or laptop computer. Also, the expected experience of the mobile environment is usually related to augmenting an offline experience or engaging in completely different ways. Definitely different from the more informative and extensive approach that the desktop experience brings you.
  • In terms of context, you should also apply this to a social media environment versus a brand-owned website. If you are considering the relevance of your message on Twitter, you can probably evaluate follow-through leads into your other mediums, but stick to the objectives you first defined for your campaign on Twitter – is it growing your follower base? Is it engaging the right consumers, therefore obtaining a certain percentage of followers or retweets that fit into a specific age group or influencer profile? Choose exactly what your objective is on each device and follow the metrics that provide you the answer for it.

This article might lead you to some frustration, as you’d probably be expecting a detailed approach to which metrics are relevant for each objective and which aren’t. That’s enough material to write a book on. My objective is just to help you grow aware that Big Data is only as relevant as the answer it provides. Gather what is relevant and define the proper queries to obtain what you actually need from it. As digital evolved, so has the interpretation of the information you can obtain from it – as well as the segmentation and purity of that same data. Make the right questions to begin with and define your metrics. At the end of the day, that data will be a lot more useful than that enormous database you’ve been collecting for ages for which you don’t have the proper expertise to transform it into a value-added business inteligence.

Remember, it’s not about how much data you gather, it’s what you can achieve with it.

Thank you for reading 5 articles this month* Join now for unlimited access

Enjoy your first month for just £1 / $1 / €1

*Read 5 free articles per month without a subscription

Join now for unlimited access

Try first month for just £1 / $1 / €1

TOPICS
Creative Bloq Staff
All things Creative Bloq

The Creative Bloq team is made up of a group of art and design enthusiasts, and has changed and evolved since Creative Bloq began back in 2012. The current website team consists of eight full-time members of staff: Editor Georgia Coggan, Deputy Editor Rosie Hilder, Ecommerce Editor Beren Neale, Senior News Editor Daniel Piper, Editor, Digital Art and 3D Ian Dean, Tech Reviews Editor Erlingur Einarsson, Ecommerce Writer Beth Nicholls and Staff Writer Natalie Fear, as well as a roster of freelancers from around the world. The ImagineFX magazine team also pitch in, ensuring that content from leading digital art publication ImagineFX is represented on Creative Bloq.